Tobacco TTG2 suppresses resistance to pathogens by sequestering NPR1 from the nucleus.

نویسندگان

  • Baoyan Li
  • Rong Gao
  • Runzhi Cui
  • Beibei Lü
  • Xiaojie Li
  • Yanying Zhao
  • Zhenzhen You
  • Shuangmei Tian
  • Hansong Dong
چکیده

TRANSPARENT TESTA GLABRA (TTG) proteins that contain the WD40 protein interaction domain are implicated in many signalling pathways in plants. The salicylic acid (SA) signalling pathway regulates the resistance of plants to pathogens through defence responses involving pathogenesis-related (PR) gene transcription, activated by the NPR1 (nonexpresser of PR genes 1) protein, which contains WD40-binding domains. We report that tobacco (Nicotiana tabacum) NtTTG2 suppresses the resistance to viral and bacterial pathogens by repressing the nuclear localisation of NPR1 and SA/NPR1-regulated defence in plants. Prevention of NtTTG2 protein production by silencing of the NtTTG2 gene resulted in the enhancement of resistance and PR gene expression, but NtTTG2 overexpression or NtTTG2 protein overproduction caused the opposite effects. Concurrent NtTTG2 and NPR1 gene silencing or NtTTG2 silencing in the absence of SA accumulation compensated for the compromised defence as a result of the NPR1 single-gene silencing or the absence of SA. However, NtTTG2 did not interact with NPR1 but was able to modulate the subcellular localisation of the NPR1 protein. In the absence of NtTTG2 production NPR1 was found predominantly in the nucleus and the PR genes were expressed. By contrast, when NtTTG2 accumulated in transgenic plants, a large proportion of NPR1 was retained in the cytoplasm and the PR genes were not expressed. These results suggest that NtTTG2 represses SA/NPR1-regulated defence by sequestering NPR1 from the nucleus and the transcriptional activation of the defence-response genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repression domain.

Systemic Acquired Resistance (SAR) in plants confers lasting broad-spectrum resistance to pathogens and requires the phytohormone salicylic acid (SA). Arabidopsis NPR1/NIM1 is a key regulator of the SAR response. Studies attempting to reveal the function of NPR1 and how it mediates SA signaling have led to isolation of two classes of proteins that interact with NPR1: the first class includes ri...

متن کامل

Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis.

Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is effective against a broad range of pathogens. SAR development in dicotyledonous plants, such as tobacco (Nicotiana tabacum) and Arabidopsis thaliana, is mediated by salicylic acid (SA). Here, using two types of SAR-inducing chemicals, 1,2-benzisothiazol-3(2H)-one1,1-dioxide and benzo(1,2,3)thiadiazole-7-carb...

متن کامل

A Conserved Puccinia striiformis Protein Interacts with Wheat NPR1 and Reduces Induction of Pathogenesis-Related Genes in Response to Pathogens.

In Arabidopsis, NPR1 is a key transcriptional coregulator of systemic acquired resistance. Upon pathogen challenge, NPR1 translocates from the cytoplasm to the nucleus, in which it interacts with TGA-bZIP transcription factors to activate the expression of several pathogenesis-related (PR) genes. In a screen of a yeast two-hybrid library from wheat leaves infected with Puccinia striiformis f. s...

متن کامل

Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes

NPR1 is an essential regulator of plant systemic acquired resistance (SAR), which confers immunity to a broad-spectrum of pathogens. SAR induction results in accumulation of the signal molecule salicylic acid (SA), which induces defense gene expression via activation of NPR1. We found that in an uninduced state, NPR1 is present as an oligomer formed through intermolecular disulfide bonds. Upon ...

متن کامل

Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs.

NPR1 is required for systemic acquired resistance, and there are five NPR1 paralogs in Arabidopsis. Here we report knockout analysis of two of these, NPR3 and NPR4. npr3 single mutants have elevated basal PR-1 expression and the npr3 npr4 double mutant shows even higher expression. The double mutant plants also display enhanced resistance against virulent bacterial and oomycete pathogens. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 125 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2012